
125

Chapter 6

Adding Entities to Our World

In the previous chapter, we put together the basic framework for our RTS game. We loaded a level and panned around
using the mouse.

In this chapter, we will build upon that by adding entities to our game world. We will build a general framework
that will allow us to easily add entities such as buildings and units to a level. Finally, we will add the ability for the
player to select these entities using the mouse.

Let’s get started. We will use the code from Chapter 5 as our starting point.

Defining Entities
These are the game entities we will be adding to our game:

•	 Buildings: Our game will have four types of buildings.

•	 Base: Primary structure used to construct other buildings

•	 Starport: Used to teleport in both ground vehicles and aircraft

•	 Harvester: Used to extract resources from oil fields

•	 Ground turret: Defensive structure used to guard against ground vehicles

•	 Vehicles: Our game will have four types of vehicles.

•	 Transport: An unarmed vehicle used to transport supplies and people

•	 Harvester: A mobile unit that deploys into the harvester building at an oil field

•	 Scout tank: A light, fast-moving tank used for scouting

•	 Heavy tank: A slower tank with heavier armor and weaponry

•	 Aircraft: Our game will have two types of aircraft.

•	 Chopper: A slow-moving craft that can attack both land and air

•	 Wraith: A fast-moving jet aircraft that can attack only in the air

•	 Terrain: Apart from the terrain already integrated in our map, we will define two additional
types of terrain.

•	 Oil field: Source of mineral resources that can be extracted for cash by deploying a
harvester

•	 Rocks: Interesting rock formations

Chapter 6 ■ adding entities to our World

126

We will store our entity types in separate JavaScript files to make the code easier to maintain. The first thing
we will do is add references to the new JavaScript files inside the head section of our HTML file. The modified head
section will now look like Listing 6-1.

Listing 6-1. Adding References to Entities (index.html)

<head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <title>Last Colony</title>
 <script src="js/common.js" type="text/javascript" charset="utf-8"></script>
 <script src="js/jquery.min.js" type="text/javascript" charset="utf-8"></script>
 <script src="js/game.js" type="text/javascript" charset="utf-8"></script>
 <script src="js/mouse.js" type="text/javascript" charset="utf-8"></script>
 <script src="js/singleplayer.js" type="text/javascript" charset="utf-8"></script>
 <script src="js/maps.js" type="text/javascript" charset="utf-8"></script>

 <!-- Definitions for game entities -->
 <script src="js/buildings.js" type="text/javascript" charset="utf-8"></script>
 <script src="js/vehicles.js" type="text/javascript" charset="utf-8"></script>
 <script src="js/aircraft.js" type="text/javascript" charset="utf-8"></script>
 <script src="js/terrain.js" type="text/javascript" charset="utf-8"></script>

 <link rel="stylesheet" href="styles.css" type="text/css" media="screen" charset="utf-8">
</head>

With this code in place, we are now ready to start defining our first set of entities, the buildings, to the game.

Defining Our First Entity: The Main Base
The first building we will define is the main base. Unlike other buildings in the game that can be constructed by the
player, the main base will always be preconstructed before the level starts. The base allows the player to teleport in
other buildings as long as the player has sufficient resources.

The base will consist of a single sprite sheet image that contains different animation states for the base
(see Figure 6-1).

Figure 6-1. Sprite sheet for the base

As you can see, the sheet consists of two different rows of frames for the blue and green teams. The sprites in this
case consist of a default animation (four frames), a damaged base (one frame), and finally an animation for when
the base is constructing a building (three frames). We will be using similar sprite sheets and a common loading and
drawing mechanism for all the entitites within our game.

Chapter 6 ■ adding entities to our World

127

The first thing we will do is define a buildings object inside buildings.js, as shown in Listing 6-2.

Listing 6-2. Defining the buildings Object with the First Building Type (buildings.js)

 var buildings = {
 list:{
 "base":{
 name:"base",
 // Properties for drawing the object
 pixelWidth:60,
 pixelHeight:60,
 baseWidth:40,
 baseHeight:40,
 pixelOffsetX:0,
 pixelOffsetY:20,
 // Properties for describing structure for pathfinding
 buildableGrid:[
 [1,1],
 [1,1]
],
 passableGrid:[
 [1,1],
 [1,1]
],
 sight:3,
 hitPoints:500,
 cost:5000,
 spriteImages:[
 {name:"healthy",count:4},
 {name:"damaged",count:1},
 {name:"contructing",count:3},
],
 },
 },
 defaults:{
 type:"buildings",
 animationIndex:0,
 direction:0,
 orders:{ type:"stand" },
 action:"stand",
 selected:false,
 selectable:true,
 // Default function for animating a building
 animate:function(){
 },
 // Default function for drawing a building
 draw:function(){
 }
 },
 load:loadItem,
 add:addItem,
}

Chapter 6 ■ adding entities to our World

128

The buildings object has four important items.

The •	 list property will contain the definitions for all our buildings. For now, we define the
base building along with properties that we will need later. These include properties for
drawing the object (such as pixelWidth), properties for pathfinding (buildableGrid), general
properties such as hitPoints and cost, and finally the list of sprite images.

The •	 defaults property contains properties and definitions common for all buildings. This
includes a placeholder for the animate() and draw() methods that are commonly used by all
buildings. We will implement these methods later.

The •	 load() method points to a common method for all the entities called loadItem() that we
still need to define. This method will load the sprite sheet and definitions for a given entity.

The •	 add() method points to another common method for all the entities called addItem()
that we need to define. This method will create a new instance of a given entity to be added to
the game.

Now that we have a basic building definition in place, we will define the loadItem() and addItem() methods
inside common.js so that they can be used by all the entities (see Listing 6-3).

Listing 6-3. Defining the loadItem() and addItem() Methods (common.js)

/* The default load() method used by all our game entities*/
function loadItem(name){
 var item = this.list[name];
 // if the item sprite array has already been loaded then no need to do it again
 if(item.spriteArray){
 return;
 }
 item.spriteSheet = loader.loadImage('images/'+this.defaults.type+'/'+name+'.png');
 item.spriteArray = [];
 item.spriteCount = 0;

 for (var i=0; i < item.spriteImages.length; i++){
 var constructImageCount = item.spriteImages[i].count;
 var constructDirectionCount = item.spriteImages[i].directions;
 if (constructDirectionCount){
 for (var j=0; j < constructDirectionCount; j++) {
 var constructImageName = item.spriteImages[i].name +"-"+j;
 item.spriteArray[constructImageName] = {
 name:constructImageName,
 count:constructImageCount,
 offset:item.spriteCount
 };
 item.spriteCount += constructImageCount;
 };
 } else {
 var constructImageName = item.spriteImages[i].name;
 item.spriteArray[constructImageName] = {
 name:constructImageName,
 count:constructImageCount,
 offset:item.spriteCount
 };

Chapter 6 ■ adding entities to our World

129

 item.spriteCount += constructImageCount;
 }

 }
}

/* The default add() method used by all our game entities*/
function addItem(details){
 var item = {};
 var name = details.name;
 $.extend(item,this.defaults);
 $.extend(item,this.list[name]);
 item.life = item.hitPoints;
 $.extend(item,details);
 return item;
}

The loadItem() method uses the image loader to load the sprite sheet image into the spriteSheet property. It
then goes through the spriteImages definition and creates a spriteArray object that stores the starting offsets for
each of the sprite animations.

You will notice that the code checks for the existence of count and directions properties when creating the array.
This allows us to define multidirectional sprites, which will be needed for drawing entities like turrets and vehicles.

The addItem() method first applies the defaults for the entity type (for example, buildings) and then extends it
with properties for the specific entity (for example, base), sets the life for the item, and finally applies any additional
properties passed into the details parameter.

This interesting way of creating objects gives us our own implementation of multiple inheritance, allowing us to
define and override properties at three different levels: building properties, base properties, and item-specific details
(such as position and team color).

Now that we have defined our first entity, we need a simple way of adding entities into a level.

Adding Entities to the Level
The first thing we will do is modify our map definition to include a list of entity types required to be loaded and a list of
items to add to the level before it starts. We will modify the first map that we created in maps.js, as shown in Listing 6-4.

Listing 6-4. Loading and Adding Entities Inside the Map (maps.js)

var maps = {
 "singleplayer":[
 {
 "name":"Entities",
 "briefing": "In this level you will add new entities to the map.\nYou will also select
them using the mouse",

 /* Map Details */
 "mapImage":"images/maps/level-one-debug-grid.png",
 "startX":4,
 "startY":4,

Chapter 6 ■ adding entities to our World

130

 /* Entities to be loaded */
 "requirements":{
 "buildings":["base"],
 "vehicles":[],
 "aircraft":[],
 "terrain":[]
 },

 /* Entities to be added */
 "items":[
 {"type":"buildings","name":"base","x":11,"y":14,"team":"blue"},
 {"type":"buildings","name":"base","x":12,"y":16,"team":"green"},
 {"type":"buildings","name":"base","x":15,"y":15,"team":"green", "life":50}
]

 }
]
}

The map is very similar to the map from Chapter 5. We have added two new sections: requirements and items.
The requirements property contains the buildings, vehicles, aircraft, and terrain to preload for this level. For

now, we load only buildings of type base.
The items array contains details of the entities we want to add to the level. The details we provide include the

item type and name, the x and y grid coordinates, and the color of the team. These are the bare-minimum properties
that we need in order to uniquely define an entity.

We have added three base buildings with random positions and teams. The last building in the items array also
contains an additional property: life. Because of the way we defined the addItem() method earlier, this life property
will override the default value of life for the base. This way, we will also have an example of a damaged building.

Next we will modify the singleplayer.startCurrentLevel() method in singleplayer.js to load and add the
entities when the game starts (see Listing 6-5).

Listing 6-5. Loading and Adding Entities inside the startCurrentLevel() Method (singleplayer.js)

startCurrentLevel:function(){
 // Load all the items for the level
 var level = maps.singleplayer[singleplayer.currentLevel];

 // Don't allow player to enter mission until all assets for the level are loaded
 $("#entermission").attr("disabled", true);
 // Load all the assets for the level
 game.currentMapImage = loader.loadImage(level.mapImage);
 game.currentLevel = level;

 game.offsetX = level.startX * game.gridSize;
 game.offsetY = level.startY * game.gridSize;

 // Load level Requirements
 game.resetArrays();
 for (var type in level.requirements){
 var requirementArray = level.requirements[type];
 for (var i=0; i < requirementArray.length; i++) {
 var name = requirementArray[i];

Chapter 6 ■ adding entities to our World

131

 if (window[type]){
 window[type].load(name);
 } else {
 console.log('Could not load type :',type);
 }
 };
 }

 for (var i = level.items.length - 1; i >= 0; i--){
 var itemDetails = level.items[i];
 game.add(itemDetails);
 };

 // Enable the enter mission button once all assets are loaded
 if (loader.loaded){
 $("#entermission").removeAttr("disabled");
 } else {
 loader.onload = function(){
 $("#entermission").removeAttr("disabled");
 }
 }

 // Load the mission screen with the current briefing
 $('#missonbriefing').html(level.briefing.replace(/\n/g,'

'));
 $("#missionscreen").show();
},

We do three things in the newly added code. We first initialize the game arrays by calling the game.resetArrays()
method. We then iterate through the requirements object and call the appropriate load() method for each entity.
The load() methods in turn will call the loader to asynchronously load all the images for the entity in the background
and enable the entermission button once all the images have been loaded.

Finally, we iterate through the items array and pass the details to the game.add() method.
Next we will add the resetArrays(), add(), and remove() methods to the game object inside game.js

(see Listing 6-6).

Listing 6-6. Adding resetArrays(), add(), and remove() to the Game Object (game.js)

resetArrays:function(){
 game.counter = 1;
 game.items = [];
 game.sortedItems = [];
 game.buildings = [];
 game.vehicles = [];
 game.aircraft = [];
 game.terrain = [];
 game.triggeredEvents = [];
 game.selectedItems = [];
 game.sortedItems = [];
},
add:function(itemDetails) {
 // Set a unique id for the item
 if (!itemDetails.uid){
 itemDetails.uid = game.counter++;
 }

Chapter 6 ■ adding entities to our World

132

 var item = window[itemDetails.type].add(itemDetails);

 // Add the item to the items array
 game.items.push(item);
 // Add the item to the type specific array
 game[item.type].push(item);
 return item;
},
remove:function(item){
 // Unselect item if it is selected
 item.selected = false;
 for (var i = game.selectedItems.length - 1; i >= 0; i--){
 if(game.selectedItems[i].uid == item.uid){
 game.selectedItems.splice(i,1);
 break;
 }
 };

 // Remove item from the items array
 for (var i = game.items.length - 1; i >= 0; i--){
 if(game.items[i].uid == item.uid){
 game.items.splice(i,1);
 break;
 }
 };

 // Remove items from the type specific array
 for (var i = game[item.type].length - 1; i >= 0; i--){
 if(game[item.type][i].uid == item.uid){
 game[item.type].splice(i,1);
 break;
 }
 };
},

The resetArrays() method merely initializes all the game-specific arrays and the counter variable.
The add() method generates a unique identifier (UID) for an item using the counter, invokes the appropriate

entity’s add() method, and finally saves the item in the appropriate game arrays. For the base building, this method
would first call buildings.add() and then add the new building to the game.items and game.buildings arrays.

The remove() method removes a specified item from the selectedItems, items, and entity-specific arrays. This
way, any time an item is removed from the game (for example, when it is destroyed), it is automatically removed from
the selection and the items array.

Now that we have set up the code for both defining the entity and adding entities to the level, we are ready to start
drawing them on the screen.

Drawing the Entities
To draw the entities, we need to implement the animate() and draw() methods inside the entity object and then call
these methods from the game animationLoop() and drawingLoop() methods.

We start by implementing the draw() and animate() methods inside the buildings object in buildings.js.
The buildings object’s default draw() and animate() methods will now look like Listing 6-7.

Chapter 6 ■ adding entities to our World

133

Listing 6-7. Implementing the Default draw() and animate() Methods (buildings.js)

animate:function(){
 // Consider an item healthy if it has more than 40% life
 if (this.life>this.hitPoints*0.4){
 this.lifeCode = "healthy";
 } else if (this.life <= 0){
 this.lifeCode = "dead";
 game.remove(this);
 return;
 } else {
 this.lifeCode = "damaged";
 }

 switch (this.action){
 case "stand":
 this.imageList = this.spriteArray[this.lifeCode];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 }
 break;
 case "construct":
 this.imageList = this.spriteArray["contructing"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
 // Once constructing is complete go back to standing
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 this.action = "stand";
 }
 break;
 }
},
// Default function for drawing a building
draw:function(){
 var x = (this.x*game.gridSize)-game.offsetX-this.pixelOffsetX;
 var y = (this.y*game.gridSize)-game.offsetY-this.pixelOffsetY;

 // All sprite sheets will have blue in the first row and green in the second row
 var colorIndex = (this.team == "blue")?0:1;
 var colorOffset = colorIndex*this.pixelHeight;
 game.foregroundContext.drawImage(this.spriteSheet,
 this.imageOffset*this.pixelWidth,colorOffset, this.pixelWidth, this.pixelHeight,
 x,y,this.pixelWidth,this.pixelHeight);
}

In the animate() method, we first set the lifeCode property of the item based on its health and hitPoints. Any
time an item’s health drops below 0, we set lifeCode to dead and remove it from the game.

Next we implement behavior based on the item’s action property. For now, we implement only the stand and
construct actions.

Chapter 6 ■ adding entities to our World

134

For the stand action, we choose either the “healthy” or “damaged” sprite animation and increment the
animationIndex property. In case the animationIndex exceeds the number of frames in the sprite, we roll the value
back to 0. This way, the animation rotates through every frame in the sprite again and again.

For the construct action, we display the constructing sprites and roll over into the stand action once it has
completed.

The draw() method is relatively simpler. We calculate the absolute x and y pixel coordinates of the building by
converting the grid x and y coordinates. We then calculate the correct image offset (based on animationIndex) and
the image color row (based on team). Finally, we draw the appropriate image on the foreground canvas by using the
foregroundContext.drawImage() method.

Now that the draw() and animate() methods are in place, we need to call them from the game object. We will
modify the game.animationLoop() and game.drawingLoop() methods inside game.js, as shown in Listing 6-8.

Listing 6-8. Calling draw() and animate() from the Game Loops (game.js)

animationLoop:function(){
 // Animate each of the elements within the game
 for (var i = game.items.length - 1; i >= 0; i--){
 game.items[i].animate();
 };

 // Sort game items into a sortedItems array based on their x,y coordinates
 game.sortedItems = $.extend([],game.items);
 game.sortedItems.sort(function(a,b){
 return b.y-a.y + ((b.y==a.y)?(a.x-b.x):0);
 });
},
drawingLoop:function(){
 // Handle Panning the Map
 game.handlePanning();

 // Since drawing the background map is a fairly large operation,
 // we only redraw the background if it changes (due to panning)
 if (game.refreshBackground){
game.backgroundContext.drawImage(game.currentMapImage,game.offsetX,game.offsetY,
game.canvasWidth, game.canvasHeight, 0,0,game.canvasWidth,game.canvasHeight);
 game.refreshBackground = false;
 }

 // Clear the foreground canvas
 game.foregroundContext.clearRect(0,0,game.canvasWidth,game.canvasHeight);

 // Start drawing the foreground elements
 for (var i = game.sortedItems.length - 1; i >= 0; i--){
 game.sortedItems[i].draw();
 };

 // Draw the mouse
 mouse.draw();

Chapter 6 ■ adding entities to our World

135

 // Call the drawing loop for the next frame using request animation frame
 if (game.running){
 requestAnimationFrame(game.drawingLoop);
 }
},

Within the animationLoop() method, we first iterate through all the game items and call their animate()
methods. We then sort all the items by y and then x values and store them in the game.sortedItems array.

The new code inside the drawingLoop() method merely iterates through the sortedItems array and calls the
draw() method of each item. We use the sortedItems array so that items are drawn in order from back to front based
on their y coordinates. This is a simple implementation of depth sorting that ensures that items closer to the player
obscure items behind them, giving the illusion of depth.

With this last change, we are now ready to see our first game entity drawn on the screen. If we open the game in
the browser and load the first level, we should see the three base buildings we defined in the map drawn next to each
other (see Figure 6-2).

Figure 6-2. The three base buildings

As you can see, the first “blue” team base is shown with a a flashing blue light using the “healthy” animation.
The second “green” team base is drawn on top of the first one and partially obscures it. This is a result of our

depth-sorting step and lets the player clearly see that the second base is in front of the first one.
Finally, the third base with a lower value of life looks damaged. This is because we automatically use the

“damaged” animation whenever the life of the building is less than 40 percent of its maximum hit points.
Now that we have the framework for showing buildings within the game, let’s add the remaining buildings,

starting with the starport.

Chapter 6 ■ adding entities to our World

136

Adding the Starport
The starport is used to purchase both land and air units. The starport sprite sheet has a few interesting animations
that the base did not have: a teleporting animation sequence that we will use when the building is first created and an
opening and closing animation sequence that we will use when we transport in new units.

The first thing we will do is add the starport definition to the buildings list just below the base definition inside
buildings.js (see Listing 6-9).

Listing 6-9. Definition for Starport Building (buildings.js)

"starport":{
 name:"starport",
 pixelWidth:40,
 pixelHeight:60,
 baseWidth:40,
 baseHeight:55,
 pixelOffsetX:1,
 pixelOffsetY:5,
 buildableGrid:[
 [1,1],
 [1,1],
 [1,1]
],
 passableGrid:[
 [1,1],
 [0,0],
 [0,0]
],
 sight:3,
 cost:2000,
 hitPoints:300,
 spriteImages:[
 {name:"teleport",count:9},
 {name:"closing",count:18},
 {name:"healthy",count:4},
 {name:"damaged",count:1},
],
},

Apart from the two new sprite sets, the starport definition is very similar to the base definition. Next, we will need
to account for animating the opening, closing, and teleporting animation states. We will do this by modifying the
default animate() method for the buildings inside buildings.js, as shown in Listing 6-10.

Listing 6-10. Modifying animate() to Handle Teleporting, Opening, and Closing

animate:function(){
 // Consider an item healthy if it has more than 40% life
 if (this.life>this.hitPoints*0.4){
 this.lifeCode = "healthy";
 } else if (this.life <= 0){
 this.lifeCode = "dead";
 game.remove(this);

Chapter 6 ■ adding entities to our World

137

 return;
 } else {
 this.lifeCode = "damaged";
 }

 switch (this.action){
 case "stand":
 this.imageList = this.spriteArray[this.lifeCode];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 }
 break;
 case "construct":
 this.imageList = this.spriteArray["contructing"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
 // Once contructing is complete go back to standing
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 this.action = "Stand";
 }
 break;
 case "teleport":
 this.imageList = this.spriteArray["teleport"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
 // Once teleporting is complete, move to either guard or stand mode
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 if (this.canAttack){
 this.action = "guard";
 } else {
 this.action = "stand";
 }
 }
 break;
 case "close":
 this.imageList = this.spriteArray["closing"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
 // Once closing is complete go back to standing
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 this.action = "stand";
 }
 break;
 case "open":
 this.imageList = this.spriteArray["closing"];
 // Opening is just the closing sprites running backwards

Chapter 6 ■ adding entities to our World

138

 this.imageOffset = this.imageList.offset + this.imageList.count - this.animationIndex;
 this.animationIndex++;
 // Once opening is complete, go back to close
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 this.action = "close";
 }
 break;
 }
},

Like the construct animation state, the teleport, close, and open animation states do not keep repeating once
they end. The teleport animation rolls over into the stand animation state (or the guard animation state for buildings
that can attack such as the gun turret). The open animation (which is merely the close animation state running
backward) rolls over into the close animation state, which then rolls over into the stand animation state.

This way, we can initialize the starport with a teleport or open animation state, knowing that it will eventually
move back to the stand animation state once the current animation completes.

Now, we can add the starport to the map by modifying the requirements and items inside maps.js, as shown in
Listing 6-11.

Listing 6-11. Adding the Starport to the Map

/* Entities to be loaded */
"requirements":{
 "buildings":["base","starport"],
 "vehicles":[],
 "aircraft":[],
 "terrain":[]
},

/* Entities to be added */
"items":[
 {"type":"buildings","name":"base","x":11,"y":14,"team":"blue"},
 {"type":"buildings","name":"base","x":12,"y":16,"team":"green"},
 {"type":"buildings","name":"base","x":15,"y":15,"team":"green", "life":50},

 {"type":"buildings","name":"starport","x":18,"y":14,"team":"blue"},
 {"type":"buildings","name":"starport","x":18,"y":10,"team":"blue", "action":"teleport"},
 {"type":"buildings","name":"starport","x":18,"y":6,"team":"green", "action":"open"},
]

When we open the game in the browser and start the level, we should see three new starport buildings, as shown
in Figure 6-3.

Chapter 6 ■ adding entities to our World

139

The first green team starport opens and then closes. The second blue team starport first glows and comes into
existence and then switches to stand mode, while the last blue team starport merely waits in stand mode.

Now that the starport has been added, the next building we will look at is the harvester.

Adding the Harvester
The harvester is a unique entity in the sense that it is both a building and a vehicle. Unlike the other buildings in
the game, the harvester is created by deploying a harvester vehicle at an oil field where it turns into the building
(see Figure 6-4).

Figure 6-3. The three starport buildings

Figure 6-4. Harvester deploying into building form

The first thing we will do is add the harvester definition to the buildings list just below the starport definition
inside buildings.js (see Listing 6-12).

Listing 6-12. Definition for Harvester Building (buildings.js)

"harvester":{
 name:"harvester",
 pixelWidth:40,

Chapter 6 ■ adding entities to our World

140

 pixelHeight:60,
 baseWidth:40,
 baseHeight:20,
 pixelOffsetX:-2,
 pixelOffsetY:40,
 buildableGrid:[
 [1,1]
],
 passableGrid:[
 [1,1]
],
 sight:3,
 cost:5000,
 hitPoints:300,
 spriteImages:[
 {name:"deploy",count:17},
 {name:"healthy",count:3},
 {name:"damaged",count:1},
],
},

Next, we will need to account for the deploying animation state. We will do this by adding the deploy case to the
default animate() method inside buildings.js, as shown in Listing 6-13.

Listing 6-13. Handling the deploy Animation State (buildings.js)

case "deploy":
 this.imageList = this.spriteArray["deploy"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
 // Once deploying is complete, go back to stand
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 this.action = "stand";
 }
 break;

The deploy state, like the teleport state we defined earlier, automatically rolls into the stand animation state once
it completes.

Now, we can add the harvester to the map by modifying the requirements and items inside maps.js, as shown in
Listing 6-14.

Listing 6-14. Adding the Harvester to the Map

/* Entities to be loaded */
"requirements":{
 "buildings":["base","starport","harvester"],
 "vehicles":[],
 "aircraft":[],
 "terrain":[]
},

Chapter 6 ■ adding entities to our World

141

/* Entities to be added */
"items":[
 {"type":"buildings","name":"base","x":11,"y":14,"team":"blue"},
 {"type":"buildings","name":"base","x":12,"y":16,"team":"green"},
 {"type":"buildings","name":"base","x":15,"y":15,"team":"green", "life":50},

 {"type":"buildings","name":"starport","x":18,"y":14,"team":"blue"},
 {"type":"buildings","name":"starport","x":18,"y":10,"team":"blue", "action":"teleport"},
 {"type":"buildings","name":"starport","x":18,"y":6,"team":"green", "action":"open"},

 {"type":"buildings","name":"harvester","x":20,"y":10,"team":"blue"},
 {"type":"buildings","name":"harvester","x":22,"y":12,"team":"green", "action":"deploy"},

]

When we open the game in the browser and start the level, we should see two new harvester buildings, as shown
in Figure 6-5.

Figure 6-5. The two harvester buildings

The blue harvester is in the default stand mode, while the green harvester in deploy mode transforms into a
building and then switches to stand mode.

Now that the harvester has been added, the last building we will look at the ground turret.

Adding the Ground Turret
The ground turret is a defensive structure that attacks only ground-based threats.

It is the only building that uses direction-based sprites. Also, unlike the other buildings, it has a default animation
state of guard, which takes the turret’s direction into account during animation and drawing.

Chapter 6 ■ adding entities to our World

142

The direction property can take values ranging from 0 to 7 increasing in the clockwise direction, with 0 pointing
toward the north and 7 pointing in the northwest direction, as shown in Figure 6-6.

Figure 6-6. Direction sprites for the gun turret ranging from 0 to 7

The first thing we will do is add the gun turret definition to the buildings list just below the harvester definition
inside buildings.js (see Listing 6-15).

Listing 6-15. Definition for Harvester Building (buildings.js)

"ground-turret":{
 name:"ground-turret",
 canAttack:true,
 canAttackLand:true,
 canAttackAir:false,
 weaponType:"cannon-ball",
 action:"guard", // Default action is guard unlike other buildings
 direction:0, // Face upward (0) by default
 directions:8, // Total of 8 turret directions allowed (0-7)
 orders:{type:"guard"},
 pixelWidth:38,
 pixelHeight:32,
 baseWidth:20,
 baseHeight:18,
 cost:1500,
 pixelOffsetX:9,
 pixelOffsetY:12,
 buildableGrid:[
 [1]
],
 passableGrid:[
 [1]
],
 sight:5,
 hitPoints:200,
 spriteImages:[
 {name:"teleport",count:9},
 {name:"healthy",count:1,directions:8},
 {name:"damaged",count:1},
],
}

Chapter 6 ■ adding entities to our World

143

The gun turret has a few additional properties that indicate whether it can be used to attack the enemy, the
direction the turret is pointing, and the type of weapon it uses. We will use these properties later when we implement
combat in our game.

The healthy sprites have an additional directions property that is used by the itemLoad() method to generate
sprites for each direction.

Next, we will add the guard case to the animate() method inside buildings.js, as shown in Listing 6-16.

Listing 6-16. Handling the guard Animation State (buildings.js)

case "guard":
 if (this.lifeCode == "damaged"){
 // The damaged turret has no directions
 this.imageList = this.spriteArray[this.lifeCode];
 } else {
 // The healthy turret has 8 directions
 this.imageList = this.spriteArray[this.lifeCode+"-"+this.direction];
 }
 this.imageOffset = this.imageList.offset;
 break;

Unlike the previous animation states, the guard state does not use animationIndex and instead uses the turret
direction to pick the appropriate image offset.

Now, we can add the turret to the map by modifying the requirements and items inside maps.js, as shown in
Listing 6-17.

Listing 6-17. Adding the Ground Turret to the Map

/* Entities to be loaded */
"requirements":{
 "buildings":["base","starport","harvester","ground-turret"],
 "vehicles":[],
 "aircraft":[],
 "terrain":[]
},

/* Entities to be added */
"items":[
 {"type":"buildings","name":"base","x":11,"y":14,"team":"blue"},
 {"type":"buildings","name":"base","x":12,"y":16,"team":"green"},
 {"type":"buildings","name":"base","x":15,"y":15,"team":"green", "life":50},

 {"type":"buildings","name":"starport","x":18,"y":14,"team":"blue"},
 {"type":"buildings","name":"starport","x":18,"y":10,"team":"blue", "action":"teleport"},
 {"type":"buildings","name":"starport","x":18,"y":6,"team":"green", "action":"open"},

 {"type":"buildings","name":"harvester","x":20,"y":10,"team":"blue"},
 {"type":"buildings","name":"harvester","x":22,"y":12,"team":"green", "action":"deploy"},

 {"type":"buildings","name":"ground-turret","x":14,"y":9,"team":"blue", "direction":3},
 {"type":"buildings","name":"ground-turret","x":14,"y":12,"team":"green", "direction":1},
 {"type":"buildings","name":"ground-turret","x":16,"y":10,"team":"blue", "action":"teleport"},
]

Chapter 6 ■ adding entities to our World

144

We specify a starting direction property for the first two turrets and set the action property to teleport for
the third. When we open the game in the browser and start the level, we should see three new turrets, as shown in
Figure 6-7.

Figure 6-7. The three ground turret buildings

Figure 6-8. The transport sprite sheet

The first two turrets are in guard mode and face two different directions, while the third one teleports in facing
the default direction and switches to guard mode after teleporting in.

At this point, we have implemented all the buildings that we need. Now it’s time to start adding a few vehicles to
our game.

Adding the Vehicles
All the vehicles in our game including the transport will have a simple sprite sheet with the vehicle pointing in eight
directions similar to the ground turret, as shown in Figure 6-8.

Chapter 6 ■ adding entities to our World

145

We will set up the code for our vehicles by defining a new vehicles object inside vehicles.js, as shown in
Listing 6-18.

Listing 6-18. Defining the vehicles Object (vehicles.js)

var vehicles = {
 list:{
 "transport":{
 name:"transport",
 pixelWidth:31,
 pixelHeight:30,
 pixelOffsetX:15,
 pixelOffsetY:15,
 radius:15,
 speed:15,
 sight:3,
 cost:400,
 hitPoints:100,
 turnSpeed:2,
 spriteImages:[
 {name:"stand",count:1,directions:8}
],
 },
 "harvester":{
 name:"harvester",
 pixelWidth:21,
 pixelHeight:20,
 pixelOffsetX:10,
 pixelOffsetY:10,
 radius:10,
 speed:10,
 sight:3,
 cost:1600,
 hitPoints:50,
 turnSpeed:2,
 spriteImages:[
 {name:"stand",count:1,directions:8}
],
 },
 "scout-tank":{
 name:"scout-tank",
 canAttack:true,
 canAttackLand:true,
 canAttackAir:false,
 weaponType:"bullet",
 pixelWidth:21,
 pixelHeight:21,
 pixelOffsetX:10,
 pixelOffsetY:10,
 radius:11,
 speed:20,
 sight:4,

Chapter 6 ■ adding entities to our World

146

 cost:500,
 hitPoints:50,
 turnSpeed:4,
 spriteImages:[
 {name:"stand",count:1,directions:8}
],
 },
 "heavy-tank":{
 name:"heavy-tank",
 canAttack:true,
 canAttackLand:true,
 canAttackAir:false,
 weaponType:"cannon-ball",
 pixelWidth:30,
 pixelHeight:30,
 pixelOffsetX:15,
 pixelOffsetY:15,
 radius:13,
 speed:15,
 sight:5,
 cost:1200,
 hitPoints:50,
 turnSpeed:4,
 spriteImages:[
 {name:"stand",count:1,directions:8}
],
 }
 },
 defaults:{
 type:"vehicles",
 animationIndex:0,
 direction:0,
 action:"stand",
 orders:{type:"stand"},
 selected:false,
 selectable:true,
 directions:8,
 animate:function(){
 // Consider an item healthy if it has more than 40% life
 if (this.life>this.hitPoints*0.4){
 this.lifeCode = "healthy";
 } else if (this.life <= 0){
 this.lifeCode = "dead";
 game.remove(this);
 return;
 } else {
 this.lifeCode = "damaged";
 }

Chapter 6 ■ adding entities to our World

147

 switch (this.action){
 case "stand":
 var direction = this.direction;
 this.imageList = this.spriteArray["stand-"+direction];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 }

 break;
 }
 },
 draw:function(){
 var x = (this.x*game.gridSize)-game.offsetX-this.pixelOffsetX;
 var y = (this.y*game.gridSize)-game.offsetY-this.pixelOffsetY;
 var colorIndex = (this.team == "blue")?0:1;
 var colorOffset = colorIndex*this.pixelHeight;
 game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset*this.pixelWidth,
colorOffset, this.pixelWidth, this.pixelHeight, x, y, this.pixelWidth, this.pixelHeight);
 }
 },
 load:loadItem,
 add:addItem,
}

The structure of our vehicles object is very similar to the buildings object. We have a list property where we
define the four vehicle types: the transport, the harvester, the scout tank, and the heavy tank.

All of the vehicle sprites have the directions property and the default stand animation implementation inside
animate(), which uses the vehicle’s direction to select the sprite to draw. We use animationIndex to handle multiple
images within a sprite so that we can add vehicles with animation if needed.

The vehicles also have properties such as speed, sight, and cost. The transport and harvester do not have any
weapons, while the two tanks have weapon-based properties similar to the ground turret building we defined earlier.
We will use all of these properties in later chapters to implement movement and combat.

Now, we can add these vehicles to the map by modifying the requirements and items properties inside maps.js,
as shown in Listing 6-19.

Listing 6-19. Adding the Vehicles to the Map

/* Entities to be loaded */
"requirements":{
 "buildings":["base","starport","harvester","ground-turret"],
 "vehicles":["transport","harvester","scout-tank","heavy-tank"],
 "aircraft":[],
 "terrain":[]
},

/* Entities to be added */
"items":[
 {"type":"buildings","name":"base","x":11,"y":14,"team":"blue"},
 {"type":"buildings","name":"base","x":12,"y":16,"team":"green"},
 {"type":"buildings","name":"base","x":15,"y":15,"team":"green", "life":50},

Chapter 6 ■ adding entities to our World

148

 {"type":"buildings","name":"starport","x":18,"y":14,"team":"blue"},
 {"type":"buildings","name":"starport","x":18,"y":10,"team":"blue", "action":"teleport"},
 {"type":"buildings","name":"starport","x":18,"y":6,"team":"green", "action":"open"},

 {"type":"buildings","name":"harvester","x":20,"y":10,"team":"blue"},
 {"type":"buildings","name":"harvester","x":22,"y":12,"team":"green", "action":"deploy"},

 {"type":"buildings","name":"ground-turret","x":14,"y":9,"team":"blue", "direction":3},
 {"type":"buildings","name":"ground-turret","x":14,"y":12,"team":"green", "direction":1},
 {"type":"buildings","name":"ground-turret" ,"x":16,"y":10, "team":"blue", "action":"teleport"},

 {"type":"vehicles","name":"transport","x":26,"y":10,"team":"blue","direction":2},
 {"type":"vehicles","name":"harvester","x":26,"y":12,"team":"blue","direction":3},
 {"type":"vehicles","name":"scout-tank","x":26,"y":14,"team":"blue", "direction":4},
 {"type":"vehicles","name":"heavy-tank","x":26,"y":16,"team":"blue", "direction":5},
 {"type":"vehicles","name":"transport","x":28,"y":10,"team":"green", "direction":7},
 {"type":"vehicles","name":"harvester","x":28,"y":12,"team":"green", "direction":6},
 {"type":"vehicles","name":"scout-tank","x":28,"y":14,"team":"green", "direction":1},
 {"type":"vehicles","name":"heavy-tank","x":28,"y":16,"team":"green", "direction":0},
]

When we open the game in the browser and start the level, we should see the vehicles, as shown in Figure 6-9.

Figure 6-9. Adding vehicles to the level

The vehicles point in different directions based on the properties we set when adding them to the items list. With
the vehicles implemented, it’s time to add the aircraft to our game.

Chapter 6 ■ adding entities to our World

149

Adding the Aircraft
The aircraft in our game have a sprite sheet similar to vehicles except for one difference: shadows. The aircraft sprite
sheet has a third row with shadows in it. Also, the chopper sprite sheet has multiple images for each direction, as
shown in Figure 6-10.

Figure 6-10. The chopper sprite sheet with shadows

We will set up the code for our aircraft by defining a new aircraft object inside aircraft.js, as shown in
Listing 6-20.

Listing 6-20. Defining the aircraft Object (aircraft.js)

var aircraft = {
 list:{
 "chopper":{
 name:"chopper",
 cost:900,
 pixelWidth:40,
 pixelHeight:40,
 pixelOffsetX:20,
 pixelOffsetY:20,
 weaponType:"heatseeker",
 radius:18,
 sight:6,
 canAttack:true,
 canAttackLand:true,
 canAttackAir:true,
 hitPoints:50,
 speed:25,
 turnSpeed:4,
 pixelShadowHeight:40,
 spriteImages:[
 {name:"fly",count:4,directions:8}
],
 },
 "wraith":{
 name:"wraith",
 cost:600,
 pixelWidth:30,

Chapter 6 ■ adding entities to our World

150

 pixelHeight:30,
 canAttack:true,
 canAttackLand:false,
 canAttackAir:true,
 weaponType:"fireball",
 pixelOffsetX:15,
 pixelOffsetY:15,
 radius:15,
 sight:8,
 speed:40,
 turnSpeed:4,
 hitPoints:50,
 pixelShadowHeight:40,
 spriteImages:[
 {name:"fly",count:1,directions:8}
],
 }
 },
 defaults:{
 type:"aircraft",
 animationIndex:0,
 direction:0,
 directions:8,
 action:"fly",
 selected:false,
 selectable:true,
 orders:{type:"float"},
 animate:function(){
 // Consider an item healthy if it has more than 40% life
 if (this.life>this.hitPoints*0.4){
 this.lifeCode = "healthy";
 } else if (this.life <= 0){
 this.lifeCode = "dead";
 game.remove(this);
 return;
 } else {
 this.lifeCode = "damaged";
 }
 switch (this.action){
 case "fly":
 var direction = this.direction;
 this.imageList = this.spriteArray["fly-"+ direction];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 }
 break;
 }
 },
 draw:function(){
 var x = (this.x*game.gridSize)-game.offsetX-this.pixelOffsetX;

Chapter 6 ■ adding entities to our World

151

 var y = (this.y*game.gridSize)-game.offsetY-this.pixelOffsetY-this.pixelShadowHeight;
 var colorIndex = (this.team == "blue")?0:1;
 var colorOffset = colorIndex*this.pixelHeight;
 var shadowOffset = this.pixelHeight*2; // The aircraft shadow is on the second row of
the sprite sheet

 game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset*this.pixelWidth,
colorOffset, this.pixelWidth, this.pixelHeight, x, y, this.pixelWidth,this.pixelHeight);
 game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset*this.pixelWidth,
shadowOffset, this.pixelWidth, this.pixelHeight, x, y+this.pixelShadowHeight, this.pixelWidth,
this.pixelHeight);
 }
 },
 load:loadItem,
 add:addItem,
}

The structure of our aircraft object is similar to the vehicles object. We have a list property where we define
the two aircraft types: the chopper and the wraith.

All of the aircraft sprites have the directions property. The default fly animation implementation inside
animate() uses the aircraft’s direction to select the sprite to draw. In the case of the chopper, we also use
animationIndex to handle multiple images for each direction.

The one big difference is in the way the draw() method is implemented. We draw a shadow at the location of the
aircraft and draw the actual aircraft pixelShadowHeight pixels above the location of the aircraft. This way, the aircraft
looks like it is floating above the ground and the shadow is on the ground below it.

Now, we can add these aircraft to the map by modifying the requirements and items properties inside maps.js,
as shown in Listing 6-21.

Listing 6-21. Adding the Aircraft to the Map

/* Entities to be loaded */
"requirements":{
 "buildings":["base","starport","harvester","ground-turret"],
 "vehicles":["transport","harvester","scout-tank","heavy-tank"],
 "aircraft":["chopper","wraith"],
 "terrain":[]
},

/* Entities to be added */
"items":[
 {"type":"buildings","name":"base","x":11,"y":14,"team":"blue"},
 {"type":"buildings","name":"base","x":12,"y":16,"team":"green"},
 {"type":"buildings","name":"base","x":15,"y":15,"team":"green", "life":50},

 {"type":"buildings","name":"starport","x":18,"y":14,"team":"blue"},
 {"type":"buildings","name":"starport","x":18,"y":10,"team":"blue", "action":"teleport"},
 {"type":"buildings","name":"starport","x":18,"y":6,"team":"green", "action":"open"},

 {"type":"buildings","name":"harvester","x":20,"y":10,"team":"blue"},
 {"type":"buildings","name":"harvester","x":22,"y":12,"team":"green", "action":"deploy"},

Chapter 6 ■ adding entities to our World

152

 {"type":"buildings","name":"ground-turret","x":14,"y":9,"team":"blue", "direction":3},
 {"type":"buildings","name":"ground-turret","x":14,"y":12,"team":"green", "direction":1},
 {"type":"buildings","name":"ground-turret","x":16,"y":10,"team":"blue", "action":"teleport"},

 {"type":"vehicles","name":"transport","x":26,"y":10,"team":"blue","direction":2},
 {"type":"vehicles","name":"harvester","x":26,"y":12,"team":"blue","direction":3},
 {"type":"vehicles","name":"scout-tank","x":26,"y":14,"team":"blue", "direction":4},
 {"type":"vehicles","name":"heavy-tank","x":26,"y":16,"team":"blue", "direction":5},
 {"type":"vehicles","name":"transport","x":28,"y":10,"team":"green", "direction":7},
 {"type":"vehicles","name":"harvester","x":28,"y":12,"team":"green", "direction":6},
 {"type":"vehicles","name":"scout-tank","x":28,"y":14,"team":"green", "direction":1},
 {"type":"vehicles","name":"heavy-tank","x":28,"y":16,"team":"green", "direction":0},
 {"type":"aircraft","name":"chopper","x":20,"y":22,"team":"blue", "direction":2},
 {"type":"aircraft","name":"wraith","x":23,"y":22,"team":"green", "direction":3},
]

When we open the game in the browser and start the level, we should see the aircraft hovering above the ground,
as shown in Figure 6-11.

Figure 6-11. The aircraft floating above the ground

The shadows help create the illusion that the aircraft are floating above the ground and also mark their exact
position on the ground. The chopper blades and their shadow on the ground seem to rotate because of the animation.

With the aircraft implemented, we will now add the terrain to our game.

Adding the Terrain
With the exception of the oil field, the terrain entities in our game are static bodies intended only for cosmetic use.
The oil field is a special entity above which the harvester vehicle can deploy into the harvester building. The oil field
sprite sheet includes two versions: a default version and a “hint” version that shows a blurry harvester above it as a
hint for the player.

Chapter 6 ■ adding entities to our World

153

We will set up the code for our terrain by defining a new terrain object inside terrain.js, as shown in
Listing 6-22.

Listing 6-22. Defining the Terrain Object (terrain.js)

var terrain = {
 list:{
 "oilfield":{
 name:"oilfield",
 pixelWidth:40,
 pixelHeight:60,
 baseWidth:40,
 baseHeight:20,
 pixelOffsetX:0,
 pixelOffsetY:40,
 buildableGrid:[
 [1,1]
],
 passableGrid:[
 [1,1]
],
 spriteImages:[
 {name:"hint",count:1},
 {name:"default",count:1},
],
 },
 "bigrocks":{
 name:"bigrocks",
 pixelWidth:40,
 pixelHeight:70,
 baseWidth:40,
 baseHeight:40,
 pixelOffsetX:0,
 pixelOffsetY:30,
 buildableGrid:[
 [1,1],
 [0,1]
],
 passableGrid:[
 [1,1],
 [0,1]
],
 spriteImages:[
 {name:"default",count:1},
],
 },
 "smallrocks":{
 name:"smallrocks",
 pixelWidth:20,
 pixelHeight:35,
 baseWidth:20,
 baseHeight:20,

Chapter 6 ■ adding entities to our World

154

 pixelOffsetX:0,
 pixelOffsetY:15,
 buildableGrid:[
 [1]
],
 passableGrid:[
 [1]
],
 spriteImages:[
 {name:"default",count:1},
],
 },
 },
 defaults:{
 type:"terrain",
 animationIndex:0,
 action:"default",
 selected:false,
 selectable:false,
 animate:function(){
 switch (this.action){
 case "default":
 this.imageList = this.spriteArray["default"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 }
 break;
 case "hint":
 this.imageList = this.spriteArray["hint"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;
 if (this.animationIndex>=this.imageList.count){
 this.animationIndex = 0;
 }
 break;
 }
 },
 draw:function(){
 var x = (this.x*game.gridSize)-game.offsetX-this.pixelOffsetX;
 var y = (this.y*game.gridSize)-game.offsetY-this.pixelOffsetY;

 var colorOffset = 0; // No team based colors
 game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset*this.pixelWidth,
colorOffset, this.pixelWidth, this.pixelHeight, x, y, this.pixelWidth, this.pixelHeight);
 }
 },
 load:loadItem,
 add:addItem,
}

Chapter 6 ■ adding entities to our World

155

The structure of our terrain object is similar to the buildings object. We have a list property where we define
the terrain types: the oil field, the big rocks, and the small rocks. We implement a default and a hint animation state
inside the animate() method. We also implement a simpler draw() method that does not use team-based colors.

Now, we can add these terrain to the map by modifying the requirements and items inside maps.js, as shown in
Listing 6-23.

Listing 6-23. Adding the Terrain to the Map

/* Entities to be loaded */
"requirements":{
 "buildings":["base","starport","harvester","ground-turret"],
 "vehicles":["transport","harvester","scout-tank","heavy-tank"],
 "aircraft":["chopper","wraith"],
 "terrain":["oilfield","bigrocks","smallrocks"]
},

/* Entities to be added */
"items":[
 {"type":"buildings","name":"base","x":11,"y":14,"team":"blue"},
 {"type":"buildings","name":"base","x":12,"y":16,"team":"green"},
 {"type":"buildings","name":"base","x":15,"y":15,"team":"green", "life":50},

 {"type":"buildings","name":"starport","x":18,"y":14,"team":"blue"},
 {"type":"buildings","name":"starport","x":18,"y":10,"team":"blue", "action":"teleport"},
 {"type":"buildings","name":"starport","x":18,"y":6,"team":"green", "action":"open"},

 {"type":"buildings","name":"harvester","x":20,"y":10,"team":"blue"},
 {"type":"buildings","name":"harvester","x":22,"y":12,"team":"green", "action":"deploy"},

 {"type":"buildings","name":"ground-turret","x":14,"y":9,"team":"blue","direction":3},
 {"type":"buildings","name":"ground-turret","x":14,"y":12,"team":"green","direction":1},
 {"type":"buildings","name":"ground-turret","x":16,"y":10,"team":"blue","action":"teleport"},

 {"type":"vehicles","name":"transport","x":26,"y":10,"team":"blue", "direction":2},
 {"type":"vehicles","name":"harvester","x":26,"y":12,"team":"blue", "direction":3},
 {"type":"vehicles","name":"scout-tank","x":26,"y":14,"team":"blue","direction":4},
 {"type":"vehicles","name":"heavy-tank","x":26,"y":16,"team":"blue","direction":5},
 {"type":"vehicles","name":"transport","x":28,"y":10,"team":"green", "direction":7},
 {"type":"vehicles","name":"harvester","x":28,"y":12,"team":"green", "direction":6},
 {"type":"vehicles","name":"scout-tank","x":28,"y":14,"team":"green","direction":1},
 {"type":"vehicles","name":"heavy-tank","x":28,"y":16,"team":"green","direction":0},

 {"type":"aircraft","name":"chopper","x":20,"y":22,"team":"blue", "direction":2},
 {"type":"aircraft","name":"wraith","x":23,"y":22,"team":"green", "direction":3},

 {"type":"terrain","name":"oilfield","x":5,"y":7},
 {"type":"terrain","name":"oilfield","x":8,"y":7,"action":"hint"},

 {"type":"terrain","name":"bigrocks","x":5,"y":3},
 {"type":"terrain","name":"smallrocks","x":8,"y":3},
]

We add two oil fields, one of which has the action property set to hint. When we open the game in the browser
and start the level, we should see the rocks and the oil fields, as shown in Figure 6-12.

Chapter 6 ■ adding entities to our World

156

The oil field on the right with the hint has a subtle glowing image of a harvester to let the player know that a
harvester can be deployed there. This hint version of the oil field can be used in the earlier levels of our campaign
when the player has just been introduced to the idea of harvesting.

With this, we have implemented all the important entities in the game. Of course, at this point all we can do is
look at them. The next thing we would like to do is interact with them by selecting them.

Selecting Game Entities
We will allow players to select entities either by clicking them or by dragging a selection box across them.

We will enable click selection by modifying the mouse object inside mouse.js, as shown in Listing 6-24.

Listing 6-24. Enabling Selection by Clicking (mouse.js)

click:function(ev,rightClick){
 // Player clicked inside the canvas

 var clickedItem = this.itemUnderMouse();
 var shiftPressed = ev.shiftKey;

 if (!rightClick){ // Player left clicked
 if (clickedItem){
 // Pressing shift adds to existing selection. If shift is not pressed, clear
existing selection
 if(!shiftPressed){
 game.clearSelection();
 }
 game.selectItem(clickedItem,shiftPressed);
 }

Figure 6-12. Adding the rocks and the oil fields

Chapter 6 ■ adding entities to our World

157

 } else { // Player right clicked
 // Handle actions like attacking and movement of selected units
 }
},
itemUnderMouse:function(){
 for (var i = game.items.length - 1; i >= 0; i--){
 var item = game.items[i];
 if (item.type=="buildings" || item.type=="terrain"){
 if(item.lifeCode != "dead"
 && item.x<= (mouse.gameX)/game.gridSize
 && item.x >= (mouse.gameX - item.baseWidth)/game.gridSize
 && item.y<= mouse.gameY/game.gridSize
 && item.y >= (mouse.gameY - item.baseHeight)/game.gridSize
){
 return item;
 }
 } else if (item.type=="aircraft"){
 if (item.lifeCode != "dead" &&
 Math.pow(item.x-mouse.gameX/game.gridSize,2) + Math.pow(item.y-(mouse.gameY+item.
pixelShadowHeight)/game.gridSize,2) < Math.pow((item.radius)/game.gridSize,2)){
 return item;
 }
 }else {
 if (item.lifeCode != "dead" && Math.pow(item.x-mouse.gameX/game.gridSize,2) + Math.
pow(item.y-mouse.gameY/game.gridSize,2) < Math.pow((item.radius)/game.gridSize,2)){
 return item;
 }
 }
 }
},

The mouse.click() method first checks whether there is an item under the mouse during the click using the
itemUnderMouse() method. In case an item was under the mouse and the left button was clicked, we call the game.
selectItem() method. The game.clearSelection() method is called before selecting the new item unless the Shift
key is pressed during the click. This way, users can select multiple items by holding down the Shift key while selecting.

The itemUnderMouse() method iterates through all the items in the list and returns the first item that is under the
mouse gameX and gameY coordinates using different criteria for different item types.

In the case of buildings and terrain, we check whether the base of the item is under the mouse. •	
This way, the player can click the base of a building to select it but won’t have problems
selecting vehicles behind the building.

In the case of vehicles, we check whether the mouse is within a radius from the vehicle center.•	

In the case of aircraft, we check whether the mouse is within a radius from the aircraft center •	
and not the shadow by using the pixelShadowHeight property.

Next we will handle drag selection by modifying the mouseup event handler inside the init() method of the
mouse object (see Listing 6-25).

Chapter 6 ■ adding entities to our World

158

Listing 6-25. Implementing Drag Selection in the mouseup Event Handler (mouse.js)

$mouseCanvas.mouseup(function(ev) {
 var shiftPressed = ev.shiftKey;
 if(ev.which==1){
 //Left key was released
 if (mouse.dragSelect){
 if (!shiftPressed){
 // Shift key was not pressed
 game.clearSelection();
 }

 var x1 = Math.min(mouse.gameX,mouse.dragX)/game.gridSize;
 var y1 = Math.min(mouse.gameY,mouse.dragY)/game.gridSize;
 var x2 = Math.max(mouse.gameX,mouse.dragX)/game.gridSize;
 var y2 = Math.max(mouse.gameY,mouse.dragY)/game.gridSize;
 for (var i = game.items.length - 1; i >= 0; i--){
 var item = game.items[i];
 if (item.type != "buildings" && item.selectable && item.team==game.team && x1<=
item.x && x2 >= item.x){
 if ((item.type == "vehicles" && y1<= item.y && y2 >= item.y)
 || (item.type == "aircraft" && (y1 <= item.y-item.pixelShadowHeight/game.
gridSize) && (y2 >= item.y-item.pixelShadowHeight/game.gridSize))){
 game.selectItem(item,shiftPressed);
 }

 }
 };
 }
 mouse.buttonPressed = false;
 mouse.dragSelect = false;
 }
 return false;
});

Inside the mouseup event, we check whether the mouse had been dragged and, if so, iterate through every game
item and check whether it lies within the bounds of the dragged rectangle. We then select the appropriate items.

Most importantly, we only allow drag selection for our own vehicles and aircraft and not for enemy entities or our
own buildings. This is because drag selection is typically used to select groups of units to move them or attack with
them quickly, and selecting enemy units or our own buildings does not really help the player.

Next, we will add some selection-related code to the game object inside game.js, as shown in Listing 6-26.

Listing 6-26. Adding Selection-Related Code to Game Object (game.js)

/* Selection Related Code */
selectionBorderColor:"rgba(255,255,0,0.5)",
selectionFillColor:"rgba(255,215,0,0.2)",
healthBarBorderColor:"rgba(0,0,0,0.8)",
healthBarHealthyFillColor:"rgba(0,255,0,0.5)",
healthBarDamagedFillColor:"rgba(255,0,0,0.5)",
lifeBarHeight:5,
clearSelection:function(){

Chapter 6 ■ adding entities to our World

159

 while(game.selectedItems.length>0){
 game.selectedItems.pop().selected = false;
 }
},
selectItem:function(item,shiftPressed){
 // Pressing shift and clicking on a selected item will deselect it
 if (shiftPressed && item.selected){
 // deselect item
 item.selected = false;
 for (var i = game.selectedItems.length - 1; i >= 0; i--){
 if(game.selectedItems[i].uid == item.uid){
 game.selectedItems.splice(i,1);
 break;
 }
 };
 return;
 }

 if (item.selectable && !item.selected){
 item.selected = true;
 game.selectedItems.push(item);
 }
},

We start by defining a few common selection-based properties related to colors and life bars. We then define the
two methods used for selection.

The •	 clearSelection() method iterates through the game.selectedItems array, clears the
selected flag from each item, and removes the item from the array.

The •	 selectItem() method either adds a selectable item to the selectedItems() array or
removes it from the array depending on whether the Shift key is pressed. This way, players can
unselect a selected item by clicking it with the Shift key pressed.

At this point, we have all the code we need to select items inside the game. However, we still need a way to
highlight selected items so we can identify them visually. This is what we will implement next.

Highlighting Selected Entities
When the player selects an item, we will detect it using the item’s selected property and draw an enclosing selection
boundary around the item. We will also add an indicator to show us how much life the item has.

We will do this by defining two default methods, drawSelection() and drawLifeBar(), for each of the entities
and modify the draw() method to call them.

First, we will implement these methods in the buildings object (see Listing 6-27).

Listing 6-27. Implementing drawSelection() and drawLifeBar() for Buildings (buildings.js)

drawLifeBar:function(){
 var x = this.drawingX+ this.pixelOffsetX;
 var y = this.drawingY - 2*game.lifeBarHeight;

Chapter 6 ■ adding entities to our World

160

 game.foregroundContext.fillStyle = (this.lifeCode == "healthy") ?
game.healthBarHealthyFillColor: game.healthBarDamagedFillColor;

game.foregroundContext.fillRect(x,y,this.baseWidth*this.life/this.hitPoints,game.lifeBarHeight)

 game.foregroundContext.strokeStyle = game.healthBarBorderColor;
 game.foregroundContext.lineWidth = 1;
 game.foregroundContext.strokeRect(x,y,this.baseWidth,game.lifeBarHeight)
},
drawSelection:function(){
 var x = this.drawingX + this.pixelOffsetX;
 var y = this.drawingY + this.pixelOffsetY;
 game.foregroundContext.strokeStyle = game.selectionBorderColor;
 game.foregroundContext.lineWidth = 1;
 game.foregroundContext.fillStyle = game.selectionFillColor;
 game.foregroundContext.fillRect(x-1,y-1,this.baseWidth+2,this.baseHeight+2);
 game.foregroundContext.strokeRect(x-1,y-1,this.baseWidth+2,this.baseHeight+2);
},
// Default function for drawing a building
draw:function(){
 var x = (this.x*game.gridSize)-game.offsetX-this.pixelOffsetX;
 var y = (this.y*game.gridSize)-game.offsetY-this.pixelOffsetY;
 this.drawingX = x;
 this.drawingY = y;
 if (this.selected){
 this.drawSelection();
 this.drawLifeBar();
 }
 // All sprite sheets will have blue in the first row and green in the second row
 var colorIndex = (this.team == "blue")?0:1;
 var colorOffset = colorIndex*this.pixelHeight;
 game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset*this.pixelWidth,
colorOffset, this.pixelWidth, this.pixelHeight, x, y, this.pixelWidth, this.pixelHeight);
}

The drawLifeBar() method merely draws a bar slightly above the building with a green or red color depending
on the life of the building. The length of the bar is proportional to the life of the building. The drawSelection()
method draws a yellow rectangle around the base of the building. Finally, we call both these methods if the item is
selected from inside the draw() method.

Next we will implement these methods for the vehicles object (see Listing 6-28).

Listing 6-28. Implementing drawSelection() and drawLifeBar() for Vehicles (vehicles.js)

drawLifeBar:function(){
 var x = this.drawingX;
 var y = this.drawingY - 2*game.lifeBarHeight;
 game.foregroundContext.fillStyle = (this.lifeCode == "healthy")?game.
healthBarHealthyFillColor:game.healthBarDamagedFillColor;

game.foregroundContext.fillRect(x,y,this.pixelWidth*this.life/this.hitPoints,game.lifeBarHeight)
 game.foregroundContext.strokeStyle = game.healthBarBorderColor;
 game.foregroundContext.lineWidth = 1;
 game.foregroundContext.strokeRect(x,y,this.pixelWidth,game.lifeBarHeight)
},

Chapter 6 ■ adding entities to our World

161

drawSelection:function(){
 var x = this.drawingX + this.pixelOffsetX;
 var y = this.drawingY + this.pixelOffsetY;
 game.foregroundContext.strokeStyle = game.selectionBorderColor;
 game.foregroundContext.lineWidth = 1;
 game.foregroundContext.beginPath();
 game.foregroundContext.arc(x,y,this.radius,0,Math.PI*2,false);
 game.foregroundContext.fillStyle = game.selectionFillColor;
 game.foregroundContext.fill();
 game.foregroundContext.stroke();
},
draw:function(){
 var x = (this.x*game.gridSize)-game.offsetX-this.pixelOffsetX;
 var y = (this.y*game.gridSize)-game.offsetY-this.pixelOffsetY;
 this.drawingX = x;
 this.drawingY = y;
 if (this.selected){
 this.drawSelection();
 this.drawLifeBar();
 }
 var colorIndex = (this.team == "blue")?0:1;
 var colorOffset = colorIndex*this.pixelHeight;
 game.foregroundContext.drawImage(this.spriteSheet,
 this.imageOffset*this.pixelWidth,colorOffset,
 this.pixelWidth,this.pixelHeight,x,y,this.pixelWidth,this.pixelHeight);
}

This time, the drawSelection() method draws a yellow, lightly filled circle under the selected vehicle. Like
before, the drawLifeBar() method draws a life bar above the vehicle.

Lastly, we will implement these methods for the aircraft object (see Listing 6-29).

Listing 6-29. Implementing drawSelection() and drawLifeBar() for Aircraft (aircraft.js)

drawLifeBar:function(){
 var x = this.drawingX;
 var y = this.drawingY - 2*game.lifeBarHeight;
 game.foregroundContext.fillStyle = (this.lifeCode ==
 "healthy")?game.healthBarHealthyFillColor:game.healthBarDamagedFillColor;

game.foregroundContext.fillRect(x,y,this.pixelWidth*this.life/this.hitPoints,game.lifeBarHeight)
 game.foregroundContext.strokeStyle = game.healthBarBorderColor;
 game.foregroundContext.lineWidth = 1;
 game.foregroundContext.strokeRect(x,y,this.pixelWidth,game.lifeBarHeight)
},
drawSelection:function(){
 var x = this.drawingX + this.pixelOffsetX;
 var y = this.drawingY + this.pixelOffsetY;
 game.foregroundContext.strokeStyle = game.selectionBorderColor;
 game.foregroundContext.lineWidth = 2;
 game.foregroundContext.beginPath();
 game.foregroundContext.arc(x,y,this.radius,0,Math.PI*2,false);
 game.foregroundContext.stroke();
 game.foregroundContext.fillStyle = game.selectionFillColor;
 game.foregroundContext.fill();

Chapter 6 ■ adding entities to our World

162

 game.foregroundContext.beginPath();
 game.foregroundContext.arc(x,y+this.pixelShadowHeight,4,0,Math.PI*2,false);
 game.foregroundContext.stroke();

 game.foregroundContext.beginPath();
 game.foregroundContext.moveTo(x,y);
 game.foregroundContext.lineTo(x,y+this.pixelShadowHeight);
 game.foregroundContext.stroke();
},
draw:function(){
 var x = (this.x*game.gridSize)-game.offsetX-this.pixelOffsetX;
 var y = (this.y*game.gridSize)-game.offsetY-this.pixelOffsetY-this.pixelShadowHeight;
 this.drawingX = x;
 this.drawingY = y;
 if (this.selected){
 this.drawSelection();
 this.drawLifeBar();
 }
 var colorIndex = (this.team == "blue")?0:1;
 var colorOffset = colorIndex*this.pixelHeight;
 var shadowOffset = this.pixelHeight*2; // The aircraft shadow is on the second row of the sprite
sheet

 game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset*this.pixelWidth,
colorOffset, this.pixelWidth, this.pixelHeight, x, y, this.pixelWidth, this.pixelHeight);
 game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset*this.pixelWidth,
shadowOffset, this.pixelWidth, this.pixelHeight, x, y+this.pixelShadowHeight,
this.pixelWidth,this.pixelHeight);
}

This time, the drawLifeBar() method adjusts for the shadow height when drawing the life bar. The drawSelection()
method draws a yellow circle around the aircraft, a straight line from the aircraft to the shadow, and finally a small
circle at the center of the shadow.

With this last change, we have implemented drawing selections for all the entities. We don’t need to implement
selections for the terrain since it cannot be selected within the game.

If we run the game in our browser, we should now be able to select items by either clicking them or dragging the
mouse over multiple units. These selected items should then show up highlighted, as shown in Figure 6-13.

Chapter 6 ■ adding entities to our World

163

Notice that the life bar above the damaged building clearly shows us how badly damaged it is. You can add or
subtract items from the selection by clicking them with the Shift key pressed. We have now completely implemented
entity selection in our game.

Summary
We covered a lot of ground in this chapter. Starting with an empty level from the previous chapter, we developed
a general framework for animating and drawing items within the game by implementing draw() and animate()
methods for these entities.

We handled depth sorting before drawing the items so that items closer to the screen obscured items that were
farther away. Using this framework, we then added buildings, vehicles, aircraft, and terrain to our game.

Finally, we implemented the ability to select these entities using the mouse and highlight these selected entities.
In the next chapter, we will implement sending commands to these entities starting with the most important one:

movement. We will also look at using pathfinding and steering algorithms so that units navigate intelligently around
buildings and other obstacles.

So, let’s keep going.

Figure 6-13. Selected items show up highlighted

